A. Winter Maintenance Expenditures

- 1. Annually, ODOT makes large expenditures for materials used in snow and ice control
 - a. During an average winter season, the Department spends approximately \$17 million on rock salt and an additional \$1 million on other materials
 - b. When winters are harsh, such as that experienced during the 2002/2003 season, expenditures soar
 - c. During the 2002/2003 season, approximately \$36 million was spent for rock salt, and nearly \$2 million was spent for other materials

2. In addition to this direct cost, numerous indirect costs are associated with the use of winter maintenance materials

- a. Their use can have an enormous impact on the environment and infrastructure (especially on the corrosion of reinforcing steel and exposed bridge members) and can result in extensive repair costs
- b. Impacts are minimized with proper application and storage techniques

B. Winter Maintenance Materials

1. Available materials

- a. Chemicals
 - i. Used in snow and ice control to
 - a) Prevent bonding of the ice and snow to the road surface
 - b) Prevent ice and frost from forming
 - c) Prevent the buildup of snow pack
 - d) Melt ice that has formed
 - ii. Available in both solid and liquid forms
- b. Abrasives
 - i. Normally used for temporary traction and in conjunction with salt or other chemicals

- c. The most commonly used winter maintenance materials
 - i. Abrasives (sand, grits)
 - ii. Salt (Sodium chloride) rock salt
 - iii. Salt brine 23% brine solution
 - iv. Calcium chloride (liquid or dry)
 - v. Magnesium chloride (liquid or dry)
 - vi. Agricultural by-products

2. Material selection

- a. Numerous factors are considered within the selection process for determining which material(s) to use in snow and ice control
 - i. Material performance
 - ii. Use requirements
 - iii. Infrastructure impact
 - iv. Environmental impacts
 - v. Availability
 - vi. Cost
- b. The variables within a storm event will dictate the material type and application rates best suited for the particular event
 - i. Through established guidelines and practices the selection process is narrowed to the best practice for the particular storm event

3. How chemicals work

- a. Generally, all snow and ice removal chemicals work by lowering the freezing point of water and turning snow and ice into a liquid or semi-liquid slush
 - i. The function of lowering the freezing point of water is dependent upon the percent of chemical in solution
 - a) This means that dry chemicals do nothing until they take on moisture and go into solution or liquid form